
Journal of Geometry and Physics 49 (2004) 1–20

Stress–energy–momentum tensors for natural
constrained variational problems

A. Fernándeza, P.L. Garćıab,∗, C. Rodrigob
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Abstract

Under certain parameterization conditions for the “infinitesimal admissible variations”, we pro-
pose a theory for constrained variational problems on arbitrary bundles, which allows us to introduce
in a very general way the concept of multi-momentum map associated to the infinitesimal symme-
tries of the problem. For natural problems with natural parameterization, a stress–energy–momentum
tensor is constructed for each “admissible section” from the multi-momentum map associated to
the natural lifting of vector fields on the base manifold. This tensor satisfies the typical properties
of a stress–energy–momentum tensor (Diff(X)-covariance, Belinfante–Rosenfeld type formulas,
etc.), and also satisfies corresponding conservation and Hilbert type formulas for natural problems
depending on a metric. The theory is illustrated with several examples of geometrical and physical
interest.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [6] the authors generalized to higher order the method introduced by Gotay and Mars-
den[11] to construct stress–energy–momentum tensors for first order variational problems
from the multi-momentum map associated to the natural lifting of vector fields of the base
manifold by infinitesimal symmetries of the problem. More precisely, the main result in[6]
is the following:
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Given a Lagrangian densityLω on the bundleJkY of k-jets of sections of a natural
bundlep : Y → X with differential index 1 (L ∈ C∞(JkY), ω = volume element onX),
for each sections ∈ Γ(X, Y) there exists a unique tensorT(s) ∈ Γ(X, T ∗X ⊗ Λn−1T ∗X)

such that

iDT(s) = µΘ(s)(D) + dα, D ∈ X(X),

whereµΘ : Γ(X, Y) → X(X)∗ ⊗Γ(X,Λn−1T ∗X) is the multi-momentum map associated
to the infinitesimal symmetriesX(X) and to any Poincaré–Cartan form,Θ, of the variational
problem (α = (n − 2)-form onX depending onΘ, s andD).

The tensor so constructed satisfies the typical properties of a stress–energy–momentum
tensor (Diff(X)-covariance, Belinfante–Rosenfeld type formulas, etc.), and admits also a
Hilbert type explicit expression as well as the corresponding conservation law for those
problems depending on a metric.

In the spirit of the program of Lagrangian reduction in its most recent formulations
[2–4,7,12], according to which a certain kind of variational problems, called “reducible”
ones, can be “reduced” to lower order constrained variational problems, it seems appropri-
ate to study the concept of stress–energy–momentum tensor with regard to such a reduction
procedure. Electromagnetic field theory (“field intensities” versus “potentials”) and rela-
tivistic fluids (Eulerian and Lagrangian pictures) are two typical examples of this situation.
The subject is still more relevant, taking into account the lack at the present time of a rea-
sonable definition of Poincaré–Cartan form for constrained problems, a concept which, as
we have seen, represents the foundation of the notion of stress–energy–momentum tensor
in the ordinary case.

Motivated by this question, in the present work we tackle the study of the concept of
stress–energy–momentum tensor for natural constrained variational problems as a first stage
in the program of reduction we have mentioned.

The outline of the paper is as follows. InSection 2we propose a formulation for the
constrained variational calculus where the “admissible infinitesimal variations”AS of the
problem are considered as one more datum, on equal footing with the Lagrangian densityLω
and the constraintS. If we now impose the existence of a vector bundleq : E → Y (bundle
of parameters) such that for each admissible sections ∈ ΓS(X, Y), the vertical components
alongs ofAS are the image of sections ofs∗E by a certain first order differential operatorPs

from that bundle to the bundles∗VY(parameterization condition 2.2), it is now possible to
obtain a first variation formula for constrained problems (Theorem 2.4), from which we have
the way clear to develop in this new situation the variational theory. In particular, taking
into consideration the “boundary term” of this formula, it is possible to state a Noether
theory for infinitesimal symmetries of constrained problems and to give a definition of the
corresponding multi-momentum map.

Section 3is dedicated to natural problems. With an obvious definition of this concept in
the constrained case (Definition 3.1), if we admit that the parameterization of the problem is
also natural (condition 3.2), it is then possible to introduce the concept of multi-momentum
map associated to the infinitesimal symmetries defined by the vector fields of the base
manifold (Definition 3.5). In these conditions the main result of this section isTheorem 3.6,
which introduces the concept of stress–energy–momentum tensor for constrained problems.
In Section 4, natural problems depending on a metric are considered, obtaining an interesting
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generalization of the typical Hilbert formula and conservation law for this kind of tensor
(Theorem 4.2andCorollaries 4.3 and 4.4).

The theory we present is illustrated with four examples of geometrical and physical
interest: Euler–Poincaré equations of principal connections (Example 1), andH-
minimal Lagrangian submanifolds (Example 2), considered at the end ofSection 2,
and electromagnetism (Example 3) and relativistic fluids (Example 4), treated in
Section 5.

Regarding the notations and other preliminary aspects, these are the same as in[6], of
which this paper can be considered as a natural continuation.

2. Calculus of variations with constraints

Our starting point will be a Lagrangian densityLω on the bundlejkp : JkY → X

of thek-jets of local sections of a fiber bundlep : Y → X on ann-dimensional oriented
manifold (L ∈ C∞(JkY) andω a volume element onX), a submanifoldS ⊆ JkY such
that(jkp)(S) = X (the constraint), and a subalgebraAS of the Lie algebraX(k)(Y) of in-
finitesimal contact transformations of orderk, tangential to the submanifoldS (the variation
algebra). On the subsetΓS(X, Y) = {s ∈ Γ(X, Y) | Im jks ⊆ S} of sections that satisfy the
constraint one has the functional:

L(s) =
∫
X

(jks)∗Lω

defined for sectionss ∈ ΓS(X, Y) for which the previous integral exists.
If Ac

S is the subalgebra of those elements in the variation algebraAS whose support
projects onto a compact subset ofX, we may define the differential of the functionalL at
any sections ∈ ΓS(X, Y) by the rule:

(δsL)(D) =
∫
X

(jks)∗LD(Lω) ∈ R, D ∈ Ac
S. (2.1)

From here the definition of a critical section can be given as follows.

Definition 2.1. A sections ∈ Γ(X, Y) is critical for the constrained variational problem
of Lagrangian densityLω, constraint submanifoldS ⊆ JkY and variation algebraAS ⊆
X(k)(Y) if s satisfies the constraint, i.e.,s ∈ ΓS(X, Y), and the differentialδsL : Ac

S → R at
the sections vanishes.

From now on, we shall assume the variation algebraAS to satisfy the following
condition.

Condition 2.2 (parameterization condition). There exists a vector bundleq : E → Y

(bundle of parameters) and a vector bundle morphismP : J1(E/X)J1Y → (VY)J1Y (where
J1(E/X)J1Y is the vector bundlej1q : J1(E/X) → J1Y and whereVYJ1Y is the pull-back
of VYto J1Y ) such that for each admissible sections ∈ ΓS(X, Y) the first order differential
operatorPs : Γ(X, s∗E) → Γ(X, s∗VY) defined byPs(es) = P(j1es) (parameterization
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operator) satisfies

Ps(Γ(X, s
∗E)) = Av

s = {Dv
s |D ∈ AS}, Ps(Γ

c(X, s∗E)) = Ac
s = {Dv

s |D ∈ Ac
S},

whereDv
s = θ1(D)jks denotes the vertical component alongs of the vector fieldD.

Given a local fibered coordinate system(xν, yj, qi) for q : E → Y (where(xν, yj) is a
local fibered coordinate system forp : Y → X and the functionsqi are linear on the fibers
of q : E → Y ), the vector bundle morphismP : J1(E/X) → VYJ1Y can be expressed,
with respect to local coordinates(xν, yjβ) and(xν, yjβ, q

i
α) 0 ≤ |α|, |β| ≤ 1 induced on the

respective 1-jet bundles, as

P(xν, y
j

β, q
i
α) = (P

jα
i (xν, y

j

β)q
i
α)

(
∂

∂yj

)
.

Thus, if a sections is defined byyj = yj(x), the corresponding differential operatorPs can
be expressed as

Ps(q
i(x)) =

(
P
j
i

(
xν,

∂yj(x)

∂xβ

)
qi(x) + P

jµ
i

(
xν,

∂yj(x)

∂xβ

)
∂qi(x)

∂xµ

)
∂

∂yj
. (2.2)

Proposition 2.3 (definition of the operatorP+
s adjoint toPs). There exists a unique first

order differential operatorP+
s : Γ(X, s∗VY∗ ⊗ ΛnT ∗X) → Γ(X, s∗E∗ ⊗ ΛnT ∗X) such

that

〈Ps(e), E 〉 = 〈e, P+
s (E )〉 + d(〈σPs(e), E 〉) (2.3)

e ∈ Γ(X, s∗E), E ∈ Γ(X, s∗V ∗Y ⊗ ΛnT ∗X), whereσPs is the symbol of the operatorPs

and where the bilinear products are the obvious ones.

Proof. Let {e1, . . . .em′ } be a local basis ofE associated to the local fibered coordinate
system(xν, yj, qi) chosen forE. Let {ω1, . . . , ωm′ } denote its dual basis. Following(2.2),
for any sectionse = qi(x)ei ∈ Γ(X, s∗E) andE = gj(x)dyj⊗ω ∈ Γ(X, s∗VY∗⊗ΛnT ∗X),
we have

〈Ps(q
iei), gj dyj ⊗ ω〉 =

(
[Ps]

j
i q

igj + [Ps]
jµ
i

∂qi

∂xµ
gj

)
ω

=
(

[Ps]
j
i q

igj + ∂

∂xµ
([Ps]

jµ
i qigj) − qi

∂

∂xµ
([Ps]

jµ
i gj)

)
ω

= qi
(

[Ps]
j
i gj − ∂

∂xµ
([Ps]

jµ
i gj)

)
ω + d([Ps]

jµ
i qigjωµ)

= 〈qiei, P+
s (gj dyj ⊗ ω)〉 + d(〈σPs(q

iei), gj dyj ⊗ ω〉),
(2.4)

where we denoteω = dx1 ∧ · · · ∧ dxn, ωµ = i∂/∂xµω, and [Ps]
j
i (x) = P

j
i (x

ν, (∂yj(x)/

∂xβ)), [Ps]
jµ
i (x) = P

jµ
i (xν, (∂yj(x)/∂xβ)) for any sections ∈ ΓS(X, Y) with equations

yj = yj(x).
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As can be seen, the term [Ps]
jµ
i qigjωµ is obtained by contraction ofE with σPs(q

iei) ∈
Γ(X, T ∗X⊗s∗VY),σPs being the symbol of the differential operatorPs. The decomposition
given is therefore global and independent of the chosen coordinate system, and the (globally
well-defined) difference between〈Ps(e), E 〉and d(〈σPs(e), E 〉) is a tensor on the component
e ∈ Γ(X, s∗E).

To prove uniqueness, let us suppose that there are two such decompositions:〈Ps(e), E 〉 =
〈e, P+

s (E )〉+d〈σPs(e), E 〉 = 〈e, P)
s (E )〉+d〈σPs(e), E 〉. We would have((P+

s −P)
s )(E ))

(e) = d◦(〈σPs−σPs, E 〉)(e), a decomposition of the formT(e) = d◦H(e), for a morphism
of vector bundlesT .

We shall then prove that there is no morphismT of a vector bundles∗E to the bundle of
n-forms that factors through the exterior derivatived and a differential operatorH (apart
from T = 0). Indeed, ifT(e) = d(H(e)) ∈ Γ(X,ΛnT ∗X) is not 0 at some pointp ∈ X,
there would exist a functionf ∈ C∞(X) with compact support in a neighborhood ofp such
that

∫
X
f · T(e) �= 0, but then

0 �=
∫
X

f · T(e) =
∫
X

T(f · e) =
∫

Supp(f)
d(H(f · e)) =

∫
∂Supp(f)

H(f · e) = 0,

where the last equality holds because Supp(H(f ·e)) ⊆ Supp(f) for any differential operator
H . The only possibility is, then,T = 0.

Moreover, in this caseH(e) is a closed(n − 1)-form for eache ∈ Γ(X, s∗E), hence
if H is C∞(X)-linear, d(H(f · e)) = d(f · H(e)) = df ∧ H(e) = 0 ∀ f ∈ C∞(X) and
thereforeH(e) ∈ Γ(X,Λn−1T ∗X) vanishes for anye ∈ Γ(X, s∗E). Both components of
our decomposition(2.3)are unique. �

Formula(2.3) provides a commutation rule which, when applied to the first variation
formula of the calculus of variations without constraints[6, Theorem 2.5], leads to the
following fundamental result.

Theorem 2.4 (constrained first variation formula).For any admissible sections ∈ ΓS(X, Y)

and any admissible infinitesimal variationD ∈ AS of a constrained variational problem
with Lagrangian densityLωonJkY ,constraint submanifoldS ⊆ JkY and variation algebra
AS ⊆ X(k)(Y), satisfying the parameterization condition2.2,one has

(jks)∗LD(Lω) = 〈eDv
s
, P+

s E (s)〉 + d[(j2k−1s)∗iD(2k−1)Θ + 〈σPs(eDv
s
), E (s)〉], (2.5)

whereE (s) andΘ are, respectively, the Euler–Lagrange operator and any Poincaré–Cartan
form for the Lagrangian densityLω as a problem without constraints and whereeDv

s
∈

Γ(X, s∗E) is any section such thatPs(eDv
s
) = Dv

s .
The linear functionalδsL defined by(2.1)will be given by the formula:

(δsL)(D) =
∫
X

〈eDv
s
, P+

s E (s)〉, D ∈ Ac
S, (2.6)

whereeDv
s

∈ Γ c(X, s∗E) is any section such thatPs(eDv
s
) = Dv

s .
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Proof. Parameterization condition 2.2 of the variation algebraAS allows the substitution
of θ1(D)jks in the first variation formula(2.3) of [6] by Ps(eDv

s
) for some sectioneDv

s
∈

Γ(X, s∗E). Formula(2.5) is now obtained by applyingProposition 2.3.
Formula(2.6)can now be obtained in a direct way takingD ∈ Ac

S . �

From formula(2.6), taking into account the arbitrariness of the sectioneDv
s

∈ Γ c(X, s∗E),
we obtain the following corollary.

Corollary 2.5. A sections ∈ Γ(X, Y) is critical for the constrained variational problem if
and only if

Im jks ⊆ S, P+
s E (s) = 0. (2.7)

The first group of equations Imjks ⊆ S are the constraints,k-order differential equations
on the components ofs, while the second group, following the explicit expressions in(2.4),
is given by

0 = P+
s E (s) =

{
P
j
i

(
xν,

∂yj(x)

∂xβ

)
· E j

(
xν,

∂|σ|yj(x)
∂xσ

)

− ∂

∂xµ

(
P
jµ
i

(
xν,

∂yj(x)

∂xβ

)
· E j

(
xν,

∂|σ|yj(x)
∂xσ

))}
ωi ⊗ ω. (2.8)

The mappingP+E : s ∈ ΓS(X, Y) �→ P+
s E (s) ∈ Γ(X,E⊗ΛnT ∗X) is determined when we

fix the vector bundle of parametersE and morphismP of parameterization forAS . We shall
call it the Euler–Lagrange operator of the constrained variational problem parameterized
by P .

In this framework, all the typical questions of the calculus of variations without constraints
(infinitesimal symmetries and Noether theorems, second variation, Hamiltonian formalism,
etc.) can be developed in a similar way. In particular, Noether theory can be established as
follows.

Definition 2.6. An infinitesimal symmetry of a constrained variational problem with La-
grangian densityLω onJkY , constraint submanifoldS ⊆ JkY and variation algebraAS ⊆
X(k)(Y), is a vector fieldD ∈ AS such thatLD(Lω) = 0.

Theorem 2.7 (Noether).Given a constrained variational problem verifying parameteriza-
tion condition2.2, if D ∈ AS is an infinitesimal symmetry and s is a critical section of the
problem, then

d[(j2k−1s)∗iD(2k−1)Θ + 〈σPs(eDv
s
), E (s)〉] = 0, (2.9)

whereΘ is any Poincaré–Cartan form of the Lagrangian densityLω as a problem without
constraints andeDv

s
∈ Γ(X, s∗E) is any section such thatPs(eDv

s
) = Dv

s .

Proof. It suffices to apply the formula of variation(2.5), taking into account that, since
D ∈ AS is an infinitesimal symmetry of the problem,LD(Lω) = 0, and sinces ∈ ΓS(X, Y)

is critical,P+
s E (s) = 0. �
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Following the same route as in the calculus of variations without constraints, this frame-
work allows us to define for any subalgebraDS of the Lie algebra of infinitesimal sym-
metries of a constrained variational problem, a multi-momentum mapµ : ΓS(X, Y) →
D∗

S ⊗ Λn−1T ∗X by the rule:

[µ(s)](D) = [(j2k−1s)∗iD(2k−1)Θ + 〈σPs(eDv
s
), E (s)〉], s ∈ ΓS(X, Y), D ∈ DS.

(2.10)

Remark 2.8. Variational problems without constraints correspond to the caseS = JkY ,
AS = X(k)(Y),E = VYandP = Id, so that for any sections ∈ Γ(X, Y) there holdsPs = Id,
P+
s = Id andσPs = 0, so formulas(2.5)–(2.9)transform into the corresponding ones for

problems without constraints.

Remark 2.9. The opposite case in complexity arises when the parameterization of the
problem is given by differential operatorsPs of arbitrary ordera which depend on the
sections up to a certain orderb, i.e., the bundle of parameters is a vector bundleq : E →
JbY , the morphismP is a vector bundle morphismP : Ja(E/X)Ja+bY → (VY)Ja+bY and
the parameterization operatorsPs : Γ(X, (jbs)∗E) → Γ(X, s∗VY), s ∈ ΓS(X, Y) are given
by the formulaPs(ejbs) = P(jae). In this case, an analogue toProposition 2.3can be given,
the adjoint of the operatorsPs exist and are univocally defined, the termσPs is replaced
by a certain(a − 1)-order differential operator, and from here all the results above can be
recovered in the same way as has been explained. For more details on this generalization,
the reader is referred to[1,16].

We will finish this section with two examples that illustrate this approach in a very clear
way.

Example 1. Euler–Poincaré equations for principal connections.

Let p : P → X be a principal bundle with structural groupG and AdP the corre-
sponding adjoint bundle. LetC(P) = J1P/G be the affine bundle of connections onP
[8–10], modelled over the vector bundleT ∗X⊗AdP . On this bundle we shall consider the
constrained variational problem with Lagrangian densityLω (L ∈ C∞(C(P))), constraint
submanifoldS = {j1

xγ | (Curvγ)x = 0} and variation algebra,AS , the natural representa-
tion over the bundle of connections of the Lie algebra autP of infinitesimal automorphisms
of the principal bundleP .

The parameterization condition 2.2 for this constrained problem holds taking as bundle
of parametersE = (AdP)C(P), the pull-back toC(P) of the adjoint bundle ofP , and the
vector bundle morphismP : (j1

xB, j
1
xγ) ∈ J1(E/X) �→ ((dγB)x, j1

xγ) ∈ V(C(P))J1C(P),
where the differential(dγB)x ∈ T ∗

x X ⊗ Adx P can be seen as an element ofV(C(P)) via
the natural identification of this bundle with(T ∗X ⊗ AdP)C(P).

The parameterization operatorPγ : Γ(X,AdP) → Γ(X, T ∗X ⊗ AdP) is the differ-
ential dγ with respect to the connectionγ and its adjoint is the corresponding divergence
operator divγ . The characterization of critical sections of this problem byCorollary 2.5is
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then given by Euler–Poincaré equations[7]:

Curvγ = 0, divγ(E Lω(γ)) = 0,

whereE Lω is the Euler–Lagrange operator associated to the Lagrangian densityLω as a
problem without constraints.

Example 2. H-minimal Lagrangian submanifolds.

Given a symplectic manifold(M2n,Ω2) endowed with a Riemannian metricg, as is
known, this theory deals with the study of Lagrangian submanifoldsXn ⊆ M2n (i.e.,
Ω2|Xn = 0) that minimize the functionalXn �→ g-area ofXn, with respect to certain
variations (“Hamiltonian” variations), that conserve the “Lagrangianity”. Given one of
these submanifolds, according to the Darboux–Weinstein Theorem, there exists a sym-
plectic diffeomorphism of a tubular neighborhood ofX ⊆ M with a neighborhood of the
zero section inT ∗X, which inherits the Riemannian structure given onM. Taking into
account that a sectionη : X → T ∗X is Lagrangian if and only if dη = 0, the prob-
lem transforms into a constrained variational problem with constraint submanifoldS =
{j1

xη | (dη)x = 0} and variation algebraAS = dC∞(X)⊕ X̃(X) given by the vertical vector
fields defined by exact 1-forms onX and by the natural lifting of vector fields fromX to
T ∗X. The Lagrangian density in this example is the functionalLω : η �→ g-area element
of η.

The parameterization condition 2.2 holds again taking as bundle of parameters the trivial
bundleE = T ∗X × R and the morphismP : (j1

xη, j
1
xf) ∈ J1(E/X) �→ (j1

xη, (df )x) ∈
V(T ∗X)J1T ∗X defined by the exterior derivative via the natural identificationV(T ∗X) =
T ∗X × T ∗X.

The adjoint operator (making the obvious identifications using the metric tensorg) for
the exterior derivatived is the codifferentialδ = ∗ d∗, where∗ is the Hodge operator of the
manifoldX with respect to its Riemannian metric tensor. The characterization of critical
sections given inCorollary 2.5is then

dη = 0, δHη = 0,

whereHη is the polar 1-form with respect to the given Riemannian metricg of the mean
curvature vector along the submanifoldη.

3. Natural constrained variational problems

In the following,p : Y → X will be a natural bundle[5,6,14,15]. For eachϕ ∈ Diff (X)

let ϕ̃ ∈ Diff (Y) be the natural lifting ofϕ to Y and forD ∈ X(X) let D̃ ∈ X(Y) be the
natural lifting ofD to Y .

Definition 3.1. A constrained variational problem with Lagrangian densityLω on JkY ,
constraint submanifoldS ⊆ JkY and variation algebraAS ⊆ X(k)(Y) is natural if:

(1) The bundlep : Y → X is natural.
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(2) The natural liftingsD̃(k) ∈ X(k)(Y) of vector fieldsD ∈ X(X) are infinitesimal sym-
metries of the constrained variational problem, i.e.,D̃(k) ∈ AS andLD̃(k)

(Lω) = 0.

Moreover, we shall assume that these variational problems satisfy the following refine-
ment of condition 2.2 of parameterization.

Condition 3.2 (natural parameterization condition).

(1) The bundle of parametersq : E → Y is natural (considered as a bundle overX), so that
for eachϕ ∈ Diff (X), the natural liftingϕ̃E onE is q-projected onto the natural lifting
ϕ̃ onY .

(2) The vector bundle morphismP : J1(E/X)J1Y → VYJ1Y is natural and hence so are
the parameterization operatorsPs : Γ(X, s∗E) → Γ(X, s∗VY), s ∈ Γ(X, Y), i.e.:

Pϕ·s(ϕ · e) = ϕ · Ps(e) ∀ e ∈ Γ(X, s∗E),

whereϕ · s = ϕ̃ ◦ s ◦ ϕ−1, ϕ · (Ps(e)) = ϕ∗ ◦ (Ps(e)) ◦ ϕ−1 andϕ · e = ϕ̃E ◦ e ◦ ϕ−1.
(3) The induced morphismD ∈ X(X) �→ (D̃(k))

v
s ∈ Γ(X, s∗VY) factors throughPs by

natural first order differential operatorsJs : X(X) → Γ(X, s∗E), i.e:

Ps ◦ Js(D) = (D̃(k))
v
s ∀ s ∈ ΓS(X, Y),

Jϕ·s(ϕ · D) = ϕ · Js(D) ∀D ∈ X(X)

Remark 3.3. In the case of natural variational problems without constraints,E = VY,
P = Id andJs is the natural lifting:

Js : X(X) → Γ(X, s∗VY)

D �→ D̃v
s

If Js is a first order differential operator, we have described in[6] how to define a stress–
energy–momentum tensor using the symbol of the operatorsJs.

As a first result towards this objective for the constrained case, we have the following
proposition.

Proposition 3.4. The Euler–Lagrange operatorP+E : s ∈ ΓS(X, Y) �→ P+
s E (s) ∈

Γ(X, s∗E∗ ⊗ ΛnT ∗X) of a natural constrained variational problem satisfying the natu-
ral parameterization condition3.2 is Diff (X)-covariant, i.e.:

P+E (ϕ · s) = ϕ · P+E (s), (3.1)

whereϕ· stands for the natural operation ofDiff (X) on the different objects where it is
applied.

Proof. For the covariance of Euler–Lagrange operatorE (s) of Lω as a problem without
constraints, see[13,16]:

E (ϕ · s) = ϕ · E (s). (3.2)
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Now in the case of constrained problems, from the naturalness of the differential
operatorP :

ϕ · (Ps(e)) = Pϕ·s(ϕ · e)
and from the definition of the adjoint operatorsP+

s andP+
ϕ·s we get

〈Pϕ·s(ϕ · e), E ϕ·s〉 = 〈ϕ · e, P+
ϕ·s(E ϕ·s)〉 + d(〈σPϕ·s(ϕ · e), E ϕ·s〉),

〈Pϕ·s(ϕ · e), E ϕ·s〉 = 〈ϕ · Ps(e), E ϕ·s〉 = ϕ · 〈Ps(e), ϕ
−1 · E ϕ·s〉

= ϕ · 〈e, P+
s (ϕ−1 · E ϕ·s)〉 + d(ϕ · 〈σPs(e), ϕ

−1 · E ϕ·s〉)
= 〈ϕ · e, (ϕ · P+

s )(E ϕ·s)〉 + d(ϕ · 〈σPs(e), ϕ
−1 · E ϕ·s〉)

for any sectionE ϕ·s ∈ Γ(X, (ϕ · s)∗VY∗ ⊗ΛnT ∗X), and for the natural definitions ofϕ· on
the different objects. By uniqueness of the adjoint operator, we conclude that

ϕ · P+
s = P+

ϕ·s, ϕ · σPs = σPϕ·s. (3.3)

Taking both equalities(3.2) and (3.3)we get(3.1), proving the proposition. �

On the other hand, consideration of the first order differential operatorsJs, s ∈ ΓS(X, Y)

from point (3) in the natural parameterization condition 3.2 allows for this kind of variational
problems to define a multi-momentum map associated to the Lie algebraX(X) of vector
fields onX, by the following definition.

Definition 3.5. We shall call the multi-momentum map of the problem the mapµ :
ΓS(X, Y) → X(X)∗ ⊗ Λn−1T ∗X given by

µ(s)(D) = (j2k−1s)∗iD̃(2k−1)
Θ + 〈σPs(Js(D)), E (s)〉, D ∈ X(X), (3.4)

whereΘ is a Poincaré–Cartan form of the Lagrangian densityLω as a variational problem
without constraints.

From this concept, which depends on the chosen Poincaré–Cartan form, we are in a
situation to prove the main result of this section.

Theorem 3.6 (main theorem).Given a natural constrained variational problem, there
holds:

(1) For each sections ∈ ΓS(X, Y) there exists a unique tensorT(s) : X(X) → Γ(X,Λn−1

T ∗X) such that, for any multi-momentum mapµ associated to the problem and any
vector fieldD ∈ X(X), there holds

iDT(s) = µ(s)(D) + dα, (3.5)

whereα is a (n − 2)-form on X depending onΘ, (P, Js) and D.
(2) The tensorT(s) is explicitly given by

iDT(s) = −(P+E (s))(σJs(D)), (3.6)
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whereP+E is the Euler–Lagrange operator of the constrained variational problem,
σJs is the symbol of the operatorJs which defines the natural parameterization, and
the contractions are the obvious ones.

(3) The assignments ∈ ΓS(X, Y) �→ T(s) ∈ Γ(X, T ∗X⊗Λn−1T ∗X) isDiff (X)-covariant,
i.e., for every diffeomorphismϕ ∈ Diff (X) one has

T(ϕ · s) = ϕ · (T(s))

whereϕ · s = ϕ̃ ◦ s ◦ ϕ−1, (ϕ · (T(s)))(ϕ∗D) = (ϕ−1)∗(T(s)(D)), ϕ̃ : Y → Y being the
natural lifting ofϕ on the bundlep : Y → X.

Proof. Considering the first variation formula(2.5) and the definition(3.4) of the multi-
momentum mapµ for symmetriesD̃, we get

0 = (jks)∗LD̃(k)
(Lω) = 〈Js(D), P+E (s)〉 + d(µ(s)(D))

= 〈D, J+
s ◦ P+

s E (s)〉 + d(µ(s)(D) + 〈σJs(D), P+E (s)〉).

But, as we know from the proof ofProposition 2.3, there are no non-trivial morphisms of
vector bundles fromTX toΛnT ∗X that factor through the exterior derivative, hence:

J+
s ◦ P+

s E (s) = 0, d(µ(s)(D) + 〈σJs(D), P+E (s)〉) = 0. (3.7)

The differential operatorµ(s)+ (P+E (s))(σJs) takes values on closed(n− 1)-forms. The
Λn−1T ∗X-valued 1-covariant tensor−(P+E (s))(σJs) is independent on the choice ofΘ
and differs from the multi-momentum map in a closed(n − 1)-form. Applying the same
general principle as in[6, p. 52], the difference is an exact(n − 1)-form. We thus obtain
the proof of(3.5) and (3.6)

For the uniqueness, as we saw in the proof ofProposition 2.3, there are no vector bundle
morphisms betweenTXandΛn−1T ∗X that take values on closed(n− 1)-forms except for
the trivial one. Thus, ifT(s) andT ′(s) satisfy(3.5)for some choice of the multi-momentum
map (depending on the chosen Poincaré–Cartan form),T(s) = T ′(s). The explicit formula
(3.6)will ensure the independence of this uniqueness from the chosenµ.

Following Proposition 3.4, we haveP+E (ϕ · s) = ϕ · P+E (s) and the naturalness as-
sumption onJ producesσJϕ·s = ϕ · σJs. The combination of both expressions yields the
Diff (X)-covariance. �

Eq. (3.5)characterizing the stress–energy–momentum tensorT(s) can be interpreted as
a generalization to natural constrained variational problems of the “Belinfante–Rosenfeld
formula”, from which this tensor is obtained by adding to the valueµ(s) ∈ HomR(X(X),

Γ(X, T ∗X⊗Λn−1T ∗X)) of the multi-momentum map (which is not a tensor) a “corrective
term” given by the last summand of that formula. On the other hand,(3.6) constitutes the
basic formula that will allow us to generalize in the constrained variational calculus the
classic Hilbert expressionT(s) = 2δL/δg of the stress–energy–momentum tensor to the
case that the natural problem has a metric as parameter.
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4. Natural constrained variational problems depending on a metric

Recalling the case of problems without constraints[6, Section 4], let Lω be a natural
Lagrangian density on thek-jet bundleJk(M×X Y) of the natural fibered productπ × p :
M×X Y → X, whereπ :M→ Y is the bundle of non-singular metrics of given signature
onX and wherep : Y → X is a natural bundle. IfωM is the horizontal volume element
onM ×X Y given by(ωM)(gx,yx) = (π × p)∗ωgx (ωg = volume element associated to
the metric tensorg), then the Lagrangian densityLω can be expressed in the formLωM,
whereL ∈ C∞(Jk(M×X Y)) is an invariant function for the natural action of Diff(X) on
Jk(M×XY). In these conditions for each metricg the natural immersion of bundles onX, ig :
Y ↪→M×X Y , defines a Lagrangian density onJkY by the rule:Lgωg = (jkig)

∗(LωM),
thus obtaining a family{Lgωg}of Lagrangian densities onJkY parameterized by metricsg ∈
Γ(X,M) onX. Following this approach, seeking our objective, how can we introduce the
“constraints”, “parameterization conditions”, “naturalness”, etc. in the variational problem
LωM onJk(M×X Y) and in the family{Lgωg} onJkY?

First of all, we shall consider a constraint submanifoldS ⊆ Jk(M×X Y) and a variation
algebraAS ⊆ X(k)(M ×X Y) for the variational problem with Lagrangian densityLωM
onJk(M×X Y) without any restriction on the metric component of the problem in a sense
which will be made clear below.

On the other hand, the constrained variational problem we shall consider will be a natural
one (Definition 3.1) endowed with a natural parameterization(P, J) (condition 3.2) whose
bundle of parameters is(S2T ∗X⊕E)M×XY (E a natural vector bundle onY ) and where the
parameterization operatorP(g,s) along any section(g, s) ∈ ΓS(X,M×X Y ) has the form

P(g,s) : Γ(X, S2T ∗X ⊕ (g, s)∗E) → Γ(X, S2T ∗X ⊕ s∗VY)

(S2, e) �→ (S2, P
Y
(g,s)(S2, e))

Under these conditions, for any metricg, the submanifoldSg = (jkig)
−1S ⊆ JkY and the

algebra

ASg = {DY ∈ X(k)(Y) | (jkig)∗(DY) = D|Im(jkig)
for someD ∈ AS}

define a constrained variational problem for the Lagrangian densityLgωg onJkY .
As additional hypothesis in this framework, we shall assume that, for any admissible

section(g, s) ∈ ΓS(X,M×X Y), the differential operatorsPY
(g,s)|0⊕s∗E define a parameter-

ization for the subspaces of infinitesimal admissible variations(ASg)
v
s and(ASg)

c
s for the

latter variational problem.
From this point, proceeding as in the case without constraints[6, Definition 4.1]we may

give the following definition.

Definition 4.1. The stress–energy–momentum tensor of the constrained variational prob-
lem with Lagrangian densityLgωg onJkY , constraint submanifoldSg ⊆ JkY and variation
algebraASg ⊆ X(k)(Y), is the correspondence that assigns to each admissible section
s ∈ ΓSg(X, Y) the tensorTg(s) = T(g, s), whereT is the stress–energy–momentum tensor
corresponding to the section(g, s) ∈ ΓS(X,M×X Y) of the natural constrained variational
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problem with Lagrangian densityLωM on Jk(M ×X Y), constraint submanifoldS ⊆
Jk(M×X Y) and variation algebraAS ⊆ X(k)(M×X Y).

Using the volume elementωg the tensorTg(s) ∈ Γ(X, T ∗X⊗Λn−1T ∗X) can be seen as a
1-covariant, 1-contravariant tensor(Tg)

1
1(s) ∈ Γ(X,TX⊗T ∗X) defined byi(Tg)11(s)(K)ωg =

Tg(s)(K) or, lowering or raising an index by means ofg, we get the tensors(Tg)2(s) ∈
Γ(X, T ∗X ⊗ T ∗X) or (Tg)2(s) ∈ Γ(X,TX ⊗ TX). We shall use the different versions of
(Tg)(s) as we need them.

The tensor we have just defined satisfies two new properties (Hilbert’s formula and the
divergence formula) whose precise statement is given below.

As is well known[6, (3.12)], for any vector fieldK ∈ X(X), its natural liftingK̃M on
the bundleM has a vertical component(K̃M)vg ∈ Γ(X, g∗VM) = Γ(X, S2T ∗X) along a
sectiong ∈ Γ(X,M) given by the expression:

(K̃M)vg = −LKg = −2 Sym(d∇g iKg),

where Sym is the symmetrization operator and d∇g is the covariant derivative with respect
to the Levi–Civita connection∇g associated to the metricg. Thus, asP(g,s) ◦ J(g,s)(K) =
((K̃M)vg, (K̃

Y )vs ) = (−2 Sym(d∇g iKg), (K̃
Y )vs ) the differential operatorsJ(g,s) must be of

the form

J(g,s)(K) = (−2 Sym(d∇g iKg), J
E
(g,s)(K)) ∈ Γ(X, S2T ∗X ⊕ (g, s)∗E), K ∈ X(X).

(4.1)

On the other hand, letPS2

(g,s) : S2 ∈ Γ(X, S2T ∗X) �→ PY
(g,s)(S2,0) ∈ Γ(X, s∗VY) and

PE
(g,s) : e ∈ Γ(X, (g, s)∗E) �→ PY

(g,s)(0, e) ∈ Γ(X, s∗VY) be the differential operators

induced by the parameterization operatorPY
(g,s) andEM(g, s) ∈ Γ(X, S2TX ⊗ ΛnT ∗X)

andE Y (g, s) ∈ Γ(X, (s∗VY)∗ ⊗ ΛnT ∗X) the two components given by the decomposition
(g, s)∗V(M×X Y) = g∗VM⊕ s∗VYof the Euler–Lagrange operator associated toLωM
as a problem without constraints. In this situation, there holds the following theorem.

Theorem 4.2. The stress–energy–momentum tensor(Tg)(s) is given by

(Tg)(s) = 2(EM + (PS2
)+E Y )11(g, s) − ((PE)+E Y )(g, s) · σJE(g, s), (4.2)

where for S2TX-valued n-formsE , the expressionE 1
1 represents the corresponding

T ∗X-valued(n − 1)-form defined byE 1
1(K) = c1

1(ig(K)E ).

Proof. Formula(3.6) for the natural problem(π × p,LωM, S,AS) leads to

Tg(s) = T(g, s) = −P+
(g,s)(EM(g, s), E Y (g, s)) · σJ(g,s), (4.3)

where the terms can be easily calculated:

P+
(g,s)(EM(g, s), E Y (g, s)) = (EM(g, s),0) + (PY

(g,s))
+E Y (g, s)

= (EM + (PS2
)+E Y , (PE)+E Y )(g, s),
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whose first component is a symmetric tensor. The symbol ofJ(g,s), following (4.1) is

σJ(g,s)(K, θ) = [−2 Sym(iKg ⊗ θ), σJE
(g,s)(K, θ)], K ∈ X(X), θ ∈ X(X)∗.

Substituting these expressions in(4.3)produce

Tg(s) = 2(EM(g, s) + (PS2

(g,s))
+E Y (g, s))11 − (PE

(g,s))
+E Y (g, s) · σJE

(g,s),

thus proving the theorem. �

Due to the latter hypothesis of our setting, the second component(PE)+E Y in the formula
is the Euler–Lagrange operator of the constrained problem(p, Lgωg, Sg,A

Y
Sg
). Thus, we

obtain the following corollary.

Corollary 4.3 (Hilbert’s formula). If s ∈ ΓSg(X, Y) is a critical section of the constrained
variational problem(p, Lgωg, Sg,ASg) or if the natural liftingK �→ JE

(g,s)(K) has differ-
ential order0, there holds

(Tg)2(s) = 2

[
δLωM

δg
+ (PS2

(g,s))
+ δLωM

δy

]
. (4.4)

Proof. It follows from (4.2), where the component((PE
(g,s))

+E Y (g, s)) · σJE
(g,s) vanishes

if s ∈ ΓSg(X, Y) is critical (i.e.,(PE
(g,s))

+E Y (g, s) = 0) or if JE
(g,s) has differential order 0

(i.e.,σJE
(g,s) = 0). �

Corollary 4.4 (divergence formula).

divg((Tg)2(s)) ⊗ ωg = −(JE
(g,s))

+((PE)+E Y (g, s))

− divg(((P
E)+E Y )(g, s) · σJE(g, s))2 ⊗ ωg. (4.5)

In particular, for any critical sections ∈ ΓSg(X, Y) of (p, Lgωg, Sg,ASg), there holds

divg(Tg)2(s) = 0

Proof. The divergence of any 2-covariant tensorE 2 ∈ Γ(X, S2T ∗X) can be given in
terms of the differential operatorK ∈ X(X) �→ 2 Sym(d∇g iKg) ∈ Γ(X, S2T ∗X) as in
[6, 4.8], obtaining for anyE = (EM, E Y ) ⊗ ωg ∈ Γ(X, (S2TX⊕ s∗V ∗Y) ⊗ ΛnT ∗X) the
expression:

(J(g,s))
+(E ) = divg(EM)2 ⊗ ωg + (JE

(g,s))
+(E Y ⊗ ωg).

For the Euler–Lagrange operatorE = (2(EM + (PS2
)+E Y )2 ⊗ ωM, (PE)+E Y ) we know

by (3.7) thatJ+E (g, s) = 0, so

divg 2(EM + (PS2
)+E Y )2(g, s) ⊗ ωg = −(JE

(g,s))
+((PE)+E Y )(g, s).
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Hence, the divergence of the stress–energy–momentum tensor given by formula(4.2) is

divg((Tg)2(s)) ⊗ ωg

= divg 2(EM + (PS2)+E Y )2(g, s) ⊗ ωg − divg(((P
E)+E Y ) · σJE)2(g, s) ⊗ ωg

= −(JE
(g,s))

+((PE)+E Y (g, s)) − divg(((P
E)+E Y )(g, s) · σJE(g, s))2 ⊗ ωg,

thus proving the formula. �

The divergence formula(4.5) gives a necessary condition divg(Tg)2(s) = 0 for a sec-
tion s ∈ ΓSg(X, Y) to be critical ((PE)+E Y (g, s) = 0). Depending on the differential
operatorsJE, this could also be a sufficient condition (see the example of the relativistic
fluid).

5. Examples

Examples 1 and 2 which we have studied inSection 2have been cases of non-natural
problems with a mainly geometric interest. In this section we are going to illustrate the
theory with two typical natural problems arising from physics: the electromagnetic field
and the relativistic fluids on space–time with a Lorentz metric as parameter.

Example 3 (electromagnetism). In[6] this theory was developed as a natural variational
problem without constraints onJ1(M ×X4 T

∗X4), whereπ : M → X4 is the bundle of
Lorentz metrics on a four-dimensional manifoldX4 andp : T ∗X4 → X4 is the bundle of
“electromagnetic potentials”,A, describing the electromagnetic field byF = dA. In this
section we will tackle this problem in terms of the electromagnetic fieldF without making
use of the potentials.

Let us consider on the bundleπ × p :M ×X4 Λ
2T ∗X4 → X4 the 0-order Lagrangian

density given byL(g, F)ωM = Lg(F)ωg = (1/2)‖F‖2
gωg. Consider the first order con-

straint on(g, F) ∈ Γ(X4,M ×X4 Λ2T ∗X4) given by the submanifoldS = {j1
x(g, F) ∈

J1(M ×X4 Λ
2T ∗X4)|(df )x = 0}. Admissible sections are 2-formsF onX4 which sat-

isfy the first group of Maxwell’s equations dF = 0. In order to fix the variation algebra
AS onJ1(M×X4 Λ

2T ∗X4) tangential toS, we consider, through the natural identification
V(gx,Fx)(M×X4Λ

2T ∗X4) = S2T ∗
x X4⊕Λ2T ∗

x X4, vertical vector fieldsDS2 defined by sec-
tionsS2 ∈ Γ(X4, S

2T ∗X4), vertical vector fieldsDdη̄ defined by closed 2-forms dη̄ ∈ dΩ1
c

that are exterior derivatives of 1-formsη̄ with compact support, and vector fieldsK̃ given
by the natural lifting of vector fieldsX(X4) to the bundleM×X4 Λ

2T ∗X4. The variation
algebraAS is going to be the 1-jet extension toJ1(M×X4 Λ

2T ∗X4) of the above defined

algebraS2T ∗X4 ⊕ dΩ1
c ⊕ X̃(X4). Its infinitesimal admissible variations are given by

Dv
(g,F) = (S2 − LKg,d(η̄ − iKF))

for anyD = DS2 + Ddη̄ + K̃ ∈ Γ(X4, S
2T ∗X ⊕ dΩ1

c ⊕ X̃(X4)).
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The natural parameterization of this natural constrained variational problem is given by

P : J1(S2T ∗X4 ⊕ T ∗X4) → V(M×X4 Λ
2T ∗X4)

j1
x(S2, A

′)(g,F) �→ (S2(x), (dA′)x)(gx,Fx)

J(g,F) : X(X4) → Γ(X4, S2T
∗X4 ⊕ T ∗X4)

K �→ (−LKg,−iKF)

Fixing the metricg, the constrained variational problem defined onp : Λ2T ∗X4 → X4
will be given by Lagrangian densityLg(F)ωg = (1/2)‖F‖2

gωg, constraint submanifold

Sg = {j1
xF | (df )x = 0}, variation algebraASg = dΩ1

c ⊕ X̃(X4), and parameterization
operatorPE

(s,g) : A′ ∈ Γ(X4, T
∗X4) �→ dA′ ∈ Γ(X4,Λ

2T ∗X4).
In this case adjunction formula(2.3)can be expressed as

〈dA′, E 〉gωg = 〈A′, δgE 〉gωg + d(∗gE ∧ A′) ∀ E ∈ Γ(X4,Λ
2T ∗X4),

where∗g is Hodge’s operator defined by〈η2, E 〉gωg = ∗gE ∧ η2 andδg = ∗−1
g ◦ d ◦ ∗g.

The linear component inA′ gives the expression for the adjoint operator(PE)+F : E ∈
Γ(X4,Λ

2T ∗X4) �→ δgE ∈ Γ(X4, T
∗X4) and the second component gives the morphism

(σPE)F : (A′, E ) ∈ Γ(X4, T
∗X ⊕ Λ2T ∗X4) �→ ∗gE ∧ A′ ∈ Γ(X4,Λ

3T ∗X4).
If E g(F) ⊗ ωg is the value of the Euler–Lagrange operator at some admissible section

F ∈ ΓSg(X4,Λ
2T ∗X4) as a problem without constraints (E g(F) ∈ Γ(X4,Λ

2T ∗X4) and
duality given by the scalar product of 2-forms w.r.t.g), the corresponding first variation
formula(2.5) for the constrained problem will be given by

F∗LD(Lgωg) = 〈A′, δgEg(F )〉gωg + d[F∗iD(Lgωg) + ∗gE g(F) ∧ A′],

whereA′ = η̄ − iKF is the 1-form that parameterizes the vertical componentDv
F =

dη̄ − LKF alongF of the variationD = Ddη̄ + K̃ ∈ ASg .
ForLgωg(F) = (1/2)‖F‖2

gωg, the Euler–Lagrange operator isE g(F ) ⊗ ωg = F ⊗ ωg

and the first variation formula will be

F∗LD(Lgωg) = 〈A′, δgF 〉gωg + d[1
2‖F‖2

giKωg + ∗gF ∧ A′],

whereD = Ddη̄ + K̃ andA′ = η̄ − iKF .
The Euler–Lagrange operatorP+E for the variational problem with constraints(p, Lgωg,

Sg,ASg) is hence given by

P+E (F) = δgF,

where the duality withF∗V(Λ2T ∗X4) is given by〈, 〉gωg. Critical sections are characterized
by

dF = 0, δgF = 0.

Coming back to the natural problem defined onπ×p :M×X4 T
∗X4 → X4, as in this case

J
T ∗X4
(g,F) : K ∈ X(X4) �→ −iKF ∈ Γ(X4, T

∗X4) has differential order 0 andPS2

(g,F) = 0,
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Hilbert’s formula(4.4)gives the explicit expression of stress–energy–momentum tensor for
this constrained variational problem:

(Tg)2(F) = 2
δLωM

δg
= 1

2
‖F‖2

g · g − F1
1 · F2.

This tensor does not coincide with the tensor obtained in[6] for the electromagnetic field
described in terms of electromagnetic potentials. That tensor(Tg)2(A) = (1/2)‖dA‖2

g ·g−
(dA)11 · (dA)2 −A⊗ δg(dA) was not projectable toΛ2T ∗X4 but coincides with the one ob-
tained here along critical sections. This difference is due to the fact that the multi-momentum
map provided by the theory of electromagnetic potentials does not project to the bundle of
electromagnetic intensitiesΛ2T ∗X4. The stress–energy–momentum tensors in each case
are related to different multi-momentum maps that coincide up to a closed term.

Example 4 (relativistic fluids). As is well known a relativistic perfect fluid on a Lorentz
manifold (X4, g) is a divergence-free time-like vector fieldD on X4 (divg D = 0 and
g(D,D) < 0) which satisfies Euler’s equation. Condition divg D = 0 can be interpreted
as a constraint for a variational problem on the bundleM ×X4 TX4, i.e., the constraint
submanifoldS̄ = {j1

x(g,D) | (divg D)(x) = 0} ⊆ J1(M×X4 TX4).
Making use of the 1-jet extensionj1Φ of the bundle isomorphismΦ : (gx,Dx) ∈
M ×X4 TX4 �→ (gx, iDxωgx) ∈ M ×X4 Λ3T ∗X4, the submanifoldS̄ transforms into
S = j1Φ(S̄) = {j1

x(g, ω3) | (dω3)(x) = 0} which allows us to deal with the constraint by
separating the metric and the fluid variables.

This suggests dealing with relativistic fluids as a constrained variational problem with
Lagrangian densityLωM onJ1(M×X4Λ

3T ∗X4), constraint submanifoldS = {j1
x(g, ω3) |

(dω3)x = 0} and variation algebraAS = S2T ∗X4 ⊕ X̃(X4) defined in the same way as in
the previous example.

The infinitesimal admissible variations are now

Dv
(g,ω3)

= (S2 − LKg,−diKω3)

for anyD = DS2 + K̃ ∈ AS .
A natural parameterization can be given by

P : J1(S2T ∗X4 ⊕ TX4)M×X4Λ
3T ∗X4

→ V(M×X4 Λ
3T ∗X4)

j1
x(S2,K)(g,ω3) �→ (S2(x),−diKω3)(g,ω3)(x)

J(g,ω3) : X(X4) → Γ(X4, S2T
∗X4 ⊕ TX4)

K �→ (−LKg,K)

In this case, for a fixed metricg, the constrained variational problem onp : Λ3TX4 → X4
will be given by a Lagrangian densityLgωg = (jkig)

∗(LωM), constraint submanifold

Sg = {j1
xω3 | (dω3)x = 0}, variation algebraASg = X̃(X4) and parameterization operator:

PE
(g,ω3)

: K ∈ Γ(X4,TX4) �→ −diKω3 ∈ Γ(X4,Λ
3T ∗X4).
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Then the adjunction formula(2.3) is analogous to the previous example:

〈−diKω3, E 〉gωg = 〈iKω3,−δgE 〉gωg + d(∗gE ∧ −iKω3) ∀ E ∈ Γ(X4,Λ
3T ∗X4)

and, by simple algebraic manipulations, can be expressed as

〈−diKω3, E 〉gωg = 〈iKg, iD d ∗g E 〉gωg + d(∗gE ∧ −iKω3),

whereD is the field describing the fluid:iDωg = ω3.
The adjoint operator(PE

(g,ω3)
)+ and the morphismσPE

(g,ω3)
are given by

(PE
(g,ω3)

)+ : E ∈ Γ(X4,Λ
3T ∗X4) �→ iD d ∗g E ∈ Γ(X4, T

∗X4),

σPE
(g,ω3)

: (K, E ) ∈ Γ(X4,TX4 ⊕ Λ3T ∗X4) �→ ∗gE ∧ −iKω3 ∈ Γ(X4,Λ
3T ∗X4).

If E g(ω3) ⊗ ωg is the value of the Euler–Lagrange operator at some admissible section
ω3 ∈ ΓSg(X4,Λ

3T ∗X4) as a problem without constraints (E g(ω3) ∈ Γ(X4,Λ
3T ∗X4) and

duality given by the scalar product of 3-forms w.r.t.g), the corresponding first variation
formula(2.5) for the constrained problem will be given by

(jkω3)
∗LK̃(k) (Lgωg) = iK(iD d ∗g E g(ω3))ωg

+ d[((j2k−1ω3)
∗iK̃(2k−1)Θ − ∗gE g(ω3) ∧ iKω3)].

Hence, theequations (2.7)that characterize critical sections are

dω3 = 0, iD d ∗g E g(ω3) = 0.

In particular, perfect fluids are defined by 0-order natural Lagrangian densitiesLωM(g, ω3)

= Lgωg with Lg = F(ρ) (whereρ = √−g(D,D)), so that the equations that characterize
critical sections are

dω3 = 0, iD d

(−F ′(ρ)
ρ

iDg

)
= 0,

which, interpreted via the isomorphismΦ :M×X4 TX4 →M×X4 Λ
3T ∗X4, expressing

the Lagrangian asLg = −ρ(1 + ε(ρ)) and definingp = ρ2(dε(ρ)/dρ), µ = ρ(1 + ε(ρ))

take the standard form of Euler equations:

divg ρU = 0, U(p)ωU + dp + (µ + p)U∇gωU = 0,

whereU = D/ρ, ωU = iUg and∇g is the Levi–Civita connection ofg.
Coming back to the variational problem onM ×X4 Λ

3T ∗X4, using Hilbert’s formula
(4.4) we may give stress–energy–momentum tensors for these problems. AsJ

TX4
(g,ω3)

= Id

has differential order 0 andPS2T ∗X4
(g,ω3)

(S2) = 0, we have

(Tg)2(ω3) = 2
δLωM

δg

for any admissible sectionω3 ∈ ΓSg(X4,Λ
3T ∗X4).
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Using the divergence formula(4.5)in this case, whereJTX4
(g,D) = Id, the divergence of this

tensor is

divg((Tg)
1
1(ω3)) = −iD d(∗gE g(ω3)),

thus, critical sections for the constrained variational problemLgωg onΛ3T ∗X4 are char-
acterized by the constraint and the vanishing of its stress–energy–momentum tensor.

In the case of perfect fluidsLg(ω3) = F(ρ) = −ρ(1 + ε(ρ)), the stress–energy–
momentum tensor and its divergence take the form:

(Tg)
2(D) = µU ⊗ U + p(U ⊗ U + g−1),

divg((Tg)
1
1(D)) = U(p)ωU + dp + (µ + p)U∇gωU

Remark 5.1. In this case the stress–energy–momentum tensor coincides with the one given
in [6] for the variational problem without constraints given by the hydrodynamic potentials.
This is due to the fact that the multi-momentum map in that case can be projected to the
bundleM×X4 Λ

3T ∗X4 as the multi-momentum map of the constrained problem.
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